Can you solve Korean SAT math Question? – korean math Question
Hello, I’m Teacher Jojo.
I’m teaching math in Korea.
The Question we’ll attempt today is a practice question for preparing for the Korean SAT.
It’s designed for 1st-year high school students.
To solve this problem, you’ll need to have knowledge about cubic polynomials, real roots, and imaginary roots.
If you’re familiar with these concepts, give it a try!
[Korean SAT math Question]
Can you solve Korean SAT math Question? -korean math Question
I will explain the Question in English.
Let a, b, and c be three real numbers. P(x) satisfies the following conditions:
(a) The cubic equation P(x) = 0 has one real root and two distinct imaginary roots. The product of the two distinct imaginary roots is 5.
(b) The cubic equation P(3x-1) = 0 has one real root at 0 and two distinct imaginary roots. The sum of the two distinct imaginary roots is 2.
What is the value of a + b + c\;?
…
…
…
Let’s think about it carefully.
The solution is written below.
If you’ve solved it, you can check the solution provided below.
…
…
…
[Solution]
First, let’s denote the three roots of the cubic equation as \alpha, \beta, and \; \gamma.
\alpha is the real root, and we assume \beta and \gamma are two distinct imaginary roots.
According to condition (a), the product of \beta and \gamma is 5.
{\color{red}\beta\gamma = 5}
Next,
It’s important to use condition (b) effectively.
You need to consider the roots of P(3x-1)=0.
Let’s denote these roots as \alpha, \beta, \gamma.
We know that the roots of P(x)=0 are \alpha, \beta, \gamma.
Therefore, for x to make P(3x-1)=0 true,
we have 3x-1 = \alpha, 3x-1 = \beta, 3x-1 = \gamma.
Understanding this is crucial to solving the problem.
In conclusion, we can say that the roots of P(3x-1)=0 are \cfrac{\alpha+1}{3}, \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3}.
Here, \cfrac{\alpha+1}{3} is the real root, while \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3} are imaginary roots.
Condition (b) stated that one root is 0, which means \cfrac{\alpha+1}{3}=0.
It was also mentioned that the sum of the two distinct imaginary roots is 2,
so \cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2.
{\color{blue}\cfrac{\alpha+1}{3}=0, \; \cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2}
When we calculate and simplify,
{\color{red}\alpha=-1, \beta+\gamma=4}
Now, we’re almost done.
If we denote the three roots of the cubic equation as \alpha, \beta, \gamma, we can use these three roots to form a cubic equation with a leading coefficient of 1.
P(x)=x^3+ax^2+bx+c
P(x)=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma
{\color{red}\alpha=-1,\; \beta+\gamma=4,\;\beta\gamma=5}
\alpha+\beta+\gamma=3
\alpha\beta+\beta\gamma+\gamma\alpha = \alpha(\beta+\gamma)+\beta\gamma=(-1)\times4+5=1
\alpha\beta\gamma=(-1)\times5=-5
P(x)=x^3-3x^2+x+5
a=-3, b=1, c=5
{\color{red}a+b+c = 3}
…
…
…
…
…
How did you find today’s Question?
Did you manage to solve it and get the correct answer?
If you did, great job! It means you have a good understanding of cubic equations.
If you didn’t get it right, that’s okay too. You can study more and try again next time.
That’s it for today.
Also, I have a YouTube channel. My YouTube channel is
https://www.youtube.com/channel/UCnJ-GLzfJdWjs04eQoxfY7g
[Korean ver]
안녕하세요. 저는 한국에서 수학을 가르치고있는 조조쌤입니다.
오늘은 수학 모의고사 문제를 가지고왔습니다.
고등학교 1학년 문제입니다.
이 문제는 삼차방정식, 실근, 허근 이런것들을 알아야 풀수있는 문제입니다.
한번 도전해보시겠습니까?
[문제]
천천히 풀어보세요.
다 풀었다면 아래 풀이와 비교해보세요.
[풀이]
우선, 삼차방정식의 세 근을 \alpha, \beta, \gamma라고 설정합니다.
\alpha 는 실근, \beta , \gamma는 서로 다른 두 허근.
조건(가)에 따르면, \beta 와 \gamma의 곱은 5입니다.
{\color{red}\beta\gamma = 5}
그리고
조건(나)가 중요합니다.
P(3x-1)=0 이 성립하게하는 x 를 생각해야합니다.
우리는 P(x)=0의 근이 \alpha, \beta, \gamma. 라고 했습니다.
그러므로 P(3x-1)=0 을 성립하게 하는 x 를 찾을때, 이렇게 생각해야합니다.
{\color{green} 3x-1 = \alpha,\; 3x-1 = \beta,\; 3x-1 = \gamma}
P(3x-1) = P( \alpha ) = 0 라는것을 이해한다면 문제는 다 풀었습니다.
따라서 P(3x-1)=0 을 만족하는 x 는,
\cfrac{\alpha+1}{3}, \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3}.
\cfrac{\alpha+1}{3} 는 실근, \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3}는 허근입니다.
조건 (나)에서 한 실근은 0 이므로,
\cfrac{\alpha+1}{3}=0.
또 서로 다른 두 허근의 합은 2라고 했습니다.
\cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2.
{\color{blue}\cfrac{\alpha+1}{3}=0, \; \cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2}
계산을 하여 간단하게 하면,
{\color{red}\alpha=-1, \beta+\gamma=4}
이제 거의 다 풀었습니다.
세 근을 알 때, 삼차방정식을 만들수가 있습니다.
P(x)=x^3+ax^2+bx+c
P(x)=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma
{\color{red}\alpha=-1,\; \beta+\gamma=4,\;\beta\gamma=5}
\alpha+\beta+\gamma=3
\alpha\beta+\beta\gamma+\gamma\alpha = \alpha(\beta+\gamma)+\beta\gamma=(-1)\times4+5=1
\alpha\beta\gamma=(-1)\times5=-5
P(x)=x^3-3x^2+x+5
a=-3, b=1, c=5
{\color{red}a+b+c = 3}
오늘의 문제는 어땠나요? 어려웠나요?
어려웠으리라 생각됩니다.
만약 이것이 쉬웠다면, 당신은 수학 짱.
답글 남기기