Can you solve Korean SAT Math Question? -korean math Question #18

Can you solve Korean SAT math Question? – korean math Question

Hello, I’m Teacher Jojo.

I’m teaching math in Korea.

The Question we’ll attempt today is a practice question for preparing for the Korean SAT.

It’s designed for 1st-year high school students.

To solve this problem, you’ll need to have knowledge about cubic polynomials, real roots, and imaginary roots.

If you’re familiar with these concepts, give it a try!

[Korean SAT math Question]

Can you solve Korean SAT math Question? -korean math Question

I will explain the Question in English.

Let a, b, and c be three real numbers. P(x) satisfies the following conditions:

(a) The cubic equation P(x) = 0 has one real root and two distinct imaginary roots. The product of the two distinct imaginary roots is 5.

(b) The cubic equation P(3x-1) = 0 has one real root at 0 and two distinct imaginary roots. The sum of the two distinct imaginary roots is 2.

What is the value of a + b + c\;?

Let’s think about it carefully.

The solution is written below.

If you’ve solved it, you can check the solution provided below.

[Solution]

First, let’s denote the three roots of the cubic equation as \alpha, \beta, and \; \gamma.

\alpha is the real root, and we assume \beta and \gamma are two distinct imaginary roots.

According to condition (a), the product of \beta and \gamma is 5.

{\color{red}\beta\gamma = 5}

Next,

It’s important to use condition (b) effectively.

You need to consider the roots of P(3x-1)=0.

Let’s denote these roots as \alpha, \beta, \gamma.

We know that the roots of P(x)=0 are \alpha, \beta, \gamma.

Therefore, for x to make P(3x-1)=0 true,

we have 3x-1 = \alpha, 3x-1 = \beta, 3x-1 = \gamma.

Understanding this is crucial to solving the problem.

In conclusion, we can say that the roots of P(3x-1)=0 are \cfrac{\alpha+1}{3}, \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3}.

Here, \cfrac{\alpha+1}{3} is the real root, while \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3} are imaginary roots.

Condition (b) stated that one root is 0, which means \cfrac{\alpha+1}{3}=0.

It was also mentioned that the sum of the two distinct imaginary roots is 2,

so \cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2.

{\color{blue}\cfrac{\alpha+1}{3}=0, \; \cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2}


When we calculate and simplify,

{\color{red}\alpha=-1, \beta+\gamma=4}

Now, we’re almost done.

If we denote the three roots of the cubic equation as \alpha, \beta, \gamma, we can use these three roots to form a cubic equation with a leading coefficient of 1.

P(x)=x^3+ax^2+bx+c

P(x)=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma

{\color{red}\alpha=-1,\; \beta+\gamma=4,\;\beta\gamma=5}

\alpha+\beta+\gamma=3

\alpha\beta+\beta\gamma+\gamma\alpha = \alpha(\beta+\gamma)+\beta\gamma=(-1)\times4+5=1

\alpha\beta\gamma=(-1)\times5=-5

P(x)=x^3-3x^2+x+5

a=-3, b=1, c=5

{\color{red}a+b+c = 3}

How did you find today’s Question?

Did you manage to solve it and get the correct answer?

If you did, great job! It means you have a good understanding of cubic equations.

If you didn’t get it right, that’s okay too. You can study more and try again next time.

That’s it for today.

Also, I have a YouTube channel. My YouTube channel is

https://www.youtube.com/channel/UCnJ-GLzfJdWjs04eQoxfY7g




[Korean ver]


안녕하세요. 저는 한국에서 수학을 가르치고있는 조조쌤입니다.

오늘은 수학 모의고사 문제를 가지고왔습니다.

고등학교 1학년 문제입니다.

이 문제는 삼차방정식, 실근, 허근 이런것들을 알아야 풀수있는 문제입니다.

한번 도전해보시겠습니까?




[문제]



천천히 풀어보세요.

다 풀었다면 아래 풀이와 비교해보세요.



[풀이]

우선, 삼차방정식의 세 근을 \alpha, \beta, \gamma라고 설정합니다.

\alpha 는 실근, \beta , \gamma는 서로 다른 두 허근.

조건(가)에 따르면, \beta\gamma의 곱은 5입니다.

{\color{red}\beta\gamma = 5}



그리고

조건(나)가 중요합니다.

P(3x-1)=0 이 성립하게하는 x 를 생각해야합니다.

우리는 P(x)=0의 근이 \alpha, \beta, \gamma. 라고 했습니다.


그러므로 P(3x-1)=0 을 성립하게 하는 x 를 찾을때, 이렇게 생각해야합니다.

{\color{green} 3x-1 = \alpha,\; 3x-1 = \beta,\; 3x-1 = \gamma}

P(3x-1) = P( \alpha ) = 0 라는것을 이해한다면 문제는 다 풀었습니다.


따라서 P(3x-1)=0 을 만족하는 x 는,

\cfrac{\alpha+1}{3}, \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3}.


\cfrac{\alpha+1}{3} 는 실근, \cfrac{\beta+1}{3}, \cfrac{\gamma+1}{3}는 허근입니다.


조건 (나)에서 한 실근은 0 이므로,

\cfrac{\alpha+1}{3}=0.


또 서로 다른 두 허근의 합은 2라고 했습니다.

\cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2.

{\color{blue}\cfrac{\alpha+1}{3}=0, \; \cfrac{\beta+1}{3}+\cfrac{\gamma+1}{3}=2}


계산을 하여 간단하게 하면,

{\color{red}\alpha=-1, \beta+\gamma=4}


이제 거의 다 풀었습니다.


세 근을 알 때, 삼차방정식을 만들수가 있습니다.


P(x)=x^3+ax^2+bx+c

P(x)=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma

{\color{red}\alpha=-1,\; \beta+\gamma=4,\;\beta\gamma=5}

\alpha+\beta+\gamma=3

\alpha\beta+\beta\gamma+\gamma\alpha = \alpha(\beta+\gamma)+\beta\gamma=(-1)\times4+5=1

\alpha\beta\gamma=(-1)\times5=-5

P(x)=x^3-3x^2+x+5

a=-3, b=1, c=5

{\color{red}a+b+c = 3}



오늘의 문제는 어땠나요? 어려웠나요?

어려웠으리라 생각됩니다.

만약 이것이 쉬웠다면, 당신은 수학 짱.

https://www.youtube.com/channel/UCnJ-GLzfJdWjs04eQoxfY7g


게시됨

카테고리

작성자

댓글

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다